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Abstract

We prove a theorem of Kirchheim and Kristensen about rank-one convexity of a certain Bellman
function related to the Ornstein counter-example.

1 Introduction.

Let n,m, and k be natural numbers. By the symbol Symk(Rn,Rm) we denote the space of all
symmetric k-tensors on Rn with values in Rm. In other words, Symk(Rn,Rm) consists of all k-linear
symmetric mappings from (Rn)k to Rm. If ϕ is a k times di�erentiable function from Rn to Rm, then
its k-th di�erential, denoted by Dk[ϕ], can be considered as a function from Rn to Symk(Rn,Rm),
i.e. for each x Dk[ϕ](x) is a symmetric k-tensor.

We are going to study some Bellman functions whose cost function evaluates the k-th gradient
of the �process�. Let V : Symk(Rn,Rm) → R be a continuous function, homogeneous of order one,
i.e. V (λξ) = λV (ξ) for all λ ∈ R+

1, and let ξ ∈ Symk(Rn,Rm). De�ne the class of admissible
functions,

Uλ = C∞0 ([0, λ]n,Rm), (1)

i.e. Uλ consists of smooth functions with values in Rm that are supported strictly inside the cube
with sidelength λ. We introduce the Bellman function,

Bλ(x) = inf
ϕ∈Uλ

∫
[0,λ]n

V
(
x+Dk[ϕ](y)

)
dy, x ∈ Symk(Rn,Rm). (2)

De�nition 1. We say that a function F : Symk(Rn,Rm) → R is rank-one convex if it is convex in

the direction of any rank-one tensor.

In other words, F is rank-one convex if for any x ∈ Symk(Rn,Rm) and any ξ ∈ Symk(Rn,Rm)
that is rank-one (i.e. there exist some b ∈ Rm and a ∈ Rn such that ξ = b⊗ a⊗k, i.e. ξ(x1, . . . , xk) =
b · (
∏k
i=1〈xi, a〉) for any x1, . . . , xk ∈ Rn, where the angular brackets denote the scalar product in Rn)

the inequality

F (x) 6
F (x+ ξ) + F (x− ξ)

2
(3)

holds true. The following theorem was mentioned in [1].

Theorem 1. The function Bλ given by formula (2) is rank-one convex.

The aim of this note is to provide a proof for this claim. We will give heuristics, and then pass
to technicalities. But before it we note two easy things. First, the function Bλ is homogeneous of
order one (because the function V is). Second, up to some a�ne transformations, the function Bλ
does not depend on the parameter λ. Indeed, the function ϕ belongs to Uλ if and only if the

1This is not the usual linear homogeneity, here we have the relation V (λξ) = λV (ξ) only for positive λ.
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function ϕλ, ϕλ(x) = ϕ(λx), belongs to U1. Moreover, Dk[ϕ](y) = λ−kDk[ϕλ](λ−1y). Therefore, we
can write

Bλ(x) = inf
ϕ∈Uλ

∫
[0,λ]n

V
(
x+Dk[ϕ](y)

)
dy = inf

ϕλ∈U1

∫
[0,λ]n

V
(
x+ λ−kDk[ϕλ](λ−1y)

)
dy =

inf
ϕλ∈U1

∫
[0,λ]n

λ−k+nV
(
λkx+Dk[ϕλ](λ−1y)

)
d(λ−1y) = λ−k+n B1(λkx) = λ−n B1(x).

(4)

So, it is enough to prove the theorem for the case λ = 1. For brevity, we write B for B1 and U for U1.

2 Heuristics.

The ideology of the proof is rather standard and can be found in many papers on the Bellman function
method in analysis, e.g. in book [2]. Let ϕx denote an optimizer for the Bellman function B at the
point x, i.e. a function belonging to the class U at which the in�mum in formula (2) is attained
(we skip the question why does such a function exist). Let ξ be a rank-one tensor, by symbols x+

and x− we denote the tensors x+ ξ and x− ξ correspondingly. To prove the theorem, it is enough to
construct a function ϕ ∈ U such that∫

[0,1]n

V
(
x+Dk[ϕ](y)

)
dy =

1

2

∫
[0,1]n

V
(
x+ +Dk[ϕx+ ](y)

)
dy +

1

2

∫
[0,1]n

V
(
x− +Dk[ϕx− ](y)

)
dy. (5)

Indeed, by the de�nition of the optimizers, the expression on the right-hand side is nothing but the
right part of inequality (3), whereas the expression on the left-hand side is not bigger than B(x). To
construct such a function ϕ, we need one more assumption.

Let `ξ be a function in U such that Dk[`ξ] equals either ξ or −ξ. The reader can easily see that
such functions do not exist (for example, due to continuity reasons), however, functions with almost
these properties exist. So, we assume that `ξ exists. Let Ω+ be the set where Dk[`ξ] equals ξ, and
let Ω− be the set where this function equals −ξ. It is natural to suppose that they have the same

area. By our assumptions, Ω+ ∪ Ω− = [0, 1]n. We make one more assumption that Ω+ = ∪N+

j=1Q
+
j

and Ω− = ∪N−j=1Q
−
j , where N+ and N− are some natural numbers and Q±j are cubes with centers y±j .

We note that this assumption is also a bit illegal even for approximations of `ξ.
With this `ξ, which is usually called an elementary laminate, we can construct the function ϕ

with ease. We de�ne the functions ϕ±j by formula

ϕ±j (y) =
(
ϕx±

)
|Q±j |

−1
(y − y±j ), (6)

i.e. ϕ+
j is the function ϕx+ adjusted to the cube Q+

j (and similarly with the minus sign); here |Q±j |
stands for the side length of Q±j . De�ne the function ϕ by formula

ϕ = `ξ +
∑
±

N±∑
j=1

ϕ±j . (7)

We have to verify equality (5). We calculate the integral on each of the partition cubes individually:∫
Q±j

V
(
x+Dk[ϕ](y)

)
dy =

∫
Q±j

V
(
x± ξ +Dk[ϕ±j ](y)

)
dy =

∫
[0,|Q±j |]

n

V
(
x± +Dk

[(
ϕx±

)
|Q±j |

−1

]
(y)
)
dy = voln(Q±j )B(x±).

(8)

Summing over all the cubes and recalling that
∑N+

j=1 voln(Q+
j ) =

∑N−
j=1 voln(Q−j ) = 1

2
(because the

sets Ω+ and Ω− have one and the same area), we get equality (5).
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3 Rigorous proof.

We have seen that the proof can be naturally divided into two parts: the �rst one is construction of
an approximation of the function `ξ, the second one is construction of the function ϕ from it.

3.1 Construction of elementary laminate

We start with building a certain amount of splines, i.e. piecewise polynomial functions on the line.

Lemma 1. Let s be some natural number and let ε be a positive real number. There exists a Cs−1-

smooth function hs,ε on the line supported in [0, 1] such that

Ds[hs,ε](x) = ±1 for almost all x ∈ [0, 1];
∥∥Ds−1[hs,ε]

∥∥
L∞(R) < ε.

Proof. The proof is by induction in s. For the case s = 1 on can take the function whose derivative
equals 1 on each interval ( 2k

2N
, 2k+1

2N
), k = 0, 1, . . . , N−1 and equals−1 on each interval ( 2k+1

2N
, 2k+2

2N
), k =

0, 1, . . . , N − 1 (the saw-function), here N is bigger than 2ε−1. To pass from s to s+ 1, we are going
to integrate hs,ε. Indeed, the function hs+1,ε given by

hs+1,ε(x) =

x∫
0

hs,ε(y) dy (9)

satis�es all the properties wanted, except for compactness of the support. The function hs+1,ε will
satisfy the required property provided

∫ 1

0
hs,ε = 0. We will get this condition by a slight modi�cation

of the function hs,ε. Consider the function h̃s,ε given by

h̃s,ε(x) =

{
2−shs,ε(2x), x ∈ [0, 1

2
];

−2−shs,ε(2x− 1), x ∈ [ 1
2
, 1].

The function h̃s,ε still has all the needed properties, but also has zero integral, which allows to
construct hs+1,ε via formula (9) with h̃s,ε instead of hs,ε.

We note that the sets where Ds+1[hs,ε] has de�nite sign have measure 1
2
. Moreover, together with

the smallness of the (s− 1)-th derivative, we get the smallness of all junior derivatives. We also note
that the role of the interval [0, 1] is not crucial here, one can replace it by any other interval I ⊂ R.
In such a case, we say that the function hs,ε is modeled on the interval I and denote such a function
by hs,ε,I .

The previous lemma is the key ingredient for construction of approximations of `ξ. Let ξ =
b ⊗ a⊗k, a ∈ Rn, b ∈ Rm, be a rank-one tensor. Consider the function `ξ,ε,I : Rn → Rm given by
formula

`ξ,ε,I(x) = b · hk,ε,I(〈a, x〉), x ∈ Rn.
This function is not far from the �ideal� laminate, Dk[`ξ,ε,I ] equals ξ or −ξ on a strip {〈a, x〉 ∈ I},
but unfortunately, `ξ,ε,I is not supported in [0, 1]n. However, we have the smallness of Dk−1[`ξ,ε,I ]
and compactness of support at the direction a (`ξ,ε,I is supported in a strip {〈a, x〉 ∈ I}).

Our aim is to cover the cube [0, 1]n by thin strips of the type {〈x, a〉 ∈ I} and then smooth out
the discontinuity on the intersection of each strip with the boundary of the cube individually. Let I
be some interval on the line. By the symbol Sa,I we denote the strip {x ∈ Rn | 〈a, x〉 ∈ I}. Let a⊥

be the orthogonal complement of a, let πa⊥ be the orthogonal projection onto this hyperplane.

Lemma 2. There exists a convex set I⊥a in a⊥ such that

I⊥a × I ⊂ Sa,I ∩ [0, 1]n, but voln
(
Sa,I ∩ [0, 1]n \ I⊥a × I

)
6 C(a)|I|2.
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Figure 1: Illustration to Lemma 2.

In this lemma, the product of two sets is taken in the coordinates (a, a⊥), i.e.

I⊥a × I = {x ∈ Rn
∣∣ 〈x, a〉 ∈ I, πa⊥x ∈ I⊥a }.

The gist of this lemma is that the slice Sa,I ∩ [0, 1]n is almost an orthogonal product of I and some
convex set I⊥a , provided I is small enough. Figure 1 can make the text easier. The set whose volume
we estimate is marked with green.

Proof. We can describe the set I⊥a as the maximal by inclusion subset of a⊥ among the subsets A for
which the product A× I lies in Sa,I ∩ [0, 1]n. With such a de�nition, I⊥a is easily seen to be convex.
Indeed, if x and y belong to I⊥a , then the segments Ix = {πa⊥x} × I and Iy = {πa⊥y} × I belong
to [0, 1]n. If z is some convex combination of x and y, then the corresponding segment {πa⊥z}× I is
a convex combination (with the same coe�cients) of Ix and Iy. The cube [0, 1]n is a convex �gure,
thus Iz ⊂ [0, 1]n, which means that z ∈ I⊥a . Conclusion: we only have to prove the inequality for the
volume for the maximal possible set I⊥a .

Surely, if y ∈ Sa,I \ I⊥a × I, then dist(y, ∂[0, 1]n) < |I| (because there is some point in the
segment Iy that lies outside [0, 1]n). Moreover, this means that the segment Iy crosses some face
of [0, 1]n transversally. So, the set Sa,I \ I⊥a × I lies inside the set

Sa,I ∩
(
∪j (Fj +B|I|(0))

)
, Fj is a face of [0, 1]n, Fj ∦ a.

The volume of this set does not exceed C(a)|I|2 (because it is a �nite union of intersections of two
stripes of width |I|, the non-zero angle between which depends only on a).

Let Φδa,I : a⊥ → R be a function adapted to the convex set I⊥a , i.e. a C∞-smooth function
supported in I⊥a whose values are in [0, 1] and which equals one on a convex set of measure at
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least (1− δ) voln−1(I⊥a ) (thus, its derivatives vanish on the interior of the same set, call it Ga,I). One
can easily construct such a function (however, the concavity of the set is required for our argument).

Now we can de�ne the function Lξ,ε,δ,η which will be the �true� elementary laminate. Let Ij be
a partition of R into intervals of smallness η. We cover the cube [0, 1]n by the strips Sa,Ij , construct

for them the sets (Ij)
⊥
a and functions Φδa,Ij . De�ne the function Lξ,ε,δ,η by formula

Lξ,ε,δ,η(x) = b ·
∑
j

hξ,ε,Ij (〈a, x〉)Φ
δ
a,Ij (π

⊥
a x). (10)

Surely, the de�nition depends on the partition, but we will not use it. For each η, we �x some
partition. The following sublemma is nothing but a consequence of the construction.

Sublemma 3. The function Lξ,ε,δ,η ∈ Ck−1([0, 1]n) de�ned by formula (10) possesses the properties

listed below.

1. It is supported inside the unit cube.

2. There exist sets Ω+ and Ω− that are �nite unions of convex sets, they are of equal volume, which
is not less than 1

2
(1− δ)(1− 2c(a)η

√
n), and Dk[Lξ,ε,δ,η] equals ξ on Ω+ and −ξ on Ω−.

3. The function Dk
[
Lξ,ε,δ,η

]
is uniformly bounded by ‖ξ‖+ c(η, δ)ε.

Proof. The �rst property is clear: all the functions summed on the right-hand side of formula (10)
are supported in the unit cube. Indeed, for any j the function hξ,ε,Ij (〈a, x〉)Φ

δ
a,Ij

(π⊥a x) is supported

on the set (Ij)
⊥
a × Ij ⊂ [0, 1]n.

The function Dk[Lξ,ε,δ,η] equals ξ or −ξ on the sets inside Ga,Ij ×Ij , because Φδa,Ij (π
⊥
a x) equals 1

and all its derivatives vanish there. By the construction, the volume of each such set is at least (1−
δ) voln((Ij)

⊥
a × Ij), so the second point would follow from the inequality∑

j

voln((Ij)
⊥
a × Ij) > 1− 2c(a)η

√
n.

But this follows from the volume estimates of Lemma 2:

1−
∑
j

voln((Ij)
⊥
a × Ij) =

∑
j

voln(Sa,Ij ∩ [0, 1]n \ (Ij)
⊥
a × Ij) 6 c(a)

∑
j

|Ij |2 6 ηc(a)2
√
n,

because the common width of the strips that actually intersect the unit cube does exceed 2
√
n.

To prove the third point, we di�erentiate formula (10) k times (⊗Sym means symmetrized tensor
product):

Dk[Lξ,ε,δ,η] =

k∑
i=0

∑
j

Di[hξ,ε,Ij (〈a, ·〉)]⊗Sym Dk−i[Φδa,Ij (π⊥a ·)].
The summand with i = k results into ±ξΦδa,Ij (π

⊥
a ·), which does not exceed ‖ξ‖ in norm. All the other

summands do not exceed c(η, δ)ε, because they include junior derivatives of h, which are bounded
by ε by Lemma 1.

3.2 Construction of optimizer and end of proof.

We are going to prove Theorem 1. We will follow the plot described in Section 2, �xing the inaccuracies
in it. The �rst unclear point is why do optimizers exist. Instead of them, we take almost optimizers.
Let ν be a small positive number. By the very de�nition, there exist functions ϕx+ and ϕx− in the
class U such that

B(x±) + ν >

∫
[0,1]n

V
(
x± +Dk[ϕx± ](y)

)
dy.

We are going to construct a function ϕ such that∫
[0,1]n

V
(
x+Dk[ϕ](y)

)
dy−ν < 1

2

( ∫
[0,1]n

V
(
x++Dk[ϕx+ ](y)

)
dy+

∫
[0,1]n

V
(
x−+Dk[ϕx− ](y)

)
dy

)
. (11)
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These inequalities together lead to

B(x)− 2ν 6
B(x+ ξ) + B(x− ξ)

2
,

which becomes (3) after letting ν → 0. Let Ω+ and Ω− be the sets from Sublemma 3. Each of these
two sets can be almost decomposed into two �nite disjoint unions of cubes Q±j ⊂ Ω±:

voln
(
Ω+ \ ∪jQ+

j

)
= voln

(
Ω− \ ∪jQ−j

)
< θ,

where θ is as small as we please. Thus Sublemma 3 implies

|1− voln(∪jQ±j )| 6 1− (1− δ)(1− 2c(a)η
√
n) + 2θ. (12)

We de�ne the function ϕ by formulas (6) and (7) with Lξ,ε,δ,η in place of `ξ. So, recalling calcula-
tion (8), we have ∫

∪jQ
±
j

V
(
x+Dk[ϕ](y)

)
dy =

voln(∪jQ+
j )

∫
[0,1]n

V
(
x+ +Dk[ϕx+ ](y)

)
dy + voln(∪jQ−j )

∫
[0,1]n

V
(
x− +Dk[ϕx− ](y)

)
dy =

1

2
voln(∪jQ±j )

( ∫
[0,1]n

V
(
x+ +Dk[ϕx+ ](y)

)
dy +

∫
[0,1]n

V
(
x− +Dk[ϕx− ](y)

)
dy
)
.

We claim that the integral over the remaining set (i.e. [0, 1]n \ (∪jQ±j )) is small. Indeed, on this set

the function Dk[ϕ] coinsides with the function Dk[Lξ,ε,δ,η] which is bounded in norm there by ‖ξ‖+
c(η, δ)ε. Choosing η and δ �rst, and then taking ε to be small, we see that this does not exceed 2‖ξ‖.
We have assumed that the function V is continuous, thus the values of V

(
x + Dk[ϕ](y)

)
are also

uniformly bounded. So, an easy estimate gives∣∣∣∣ ∫
[0,1]n\(∪jQ

±
j )

V
(
x+Dk[ϕ](y)

)
dy

∣∣∣∣ 6 (1− voln(∪jQ±j )) sup
‖ζ‖62‖ξ‖

|V (ζ)|.

Collecting all the estimates, we get∫
[0,1]n

V
(
x+Dk[ϕ](y)

)
dy 6

1

2
voln(∪jQ±j )

( ∫
[0,1]n

V
(
x+ +Dk[ϕx+ ](y)

)
dy+

∫
[0,1]n

V
(
x− +Dk[ϕx− ](y)

)
dy

)
+ (1− voln(∪jQ±j )) sup

‖ζ‖62‖ξ‖
|V (ζ)|,

which proves inequality (11), because voln(∪jQ±j )→ 1 if η, δ, θ → 0 by (12).
We have cheated a little: the constructed function ϕ does not belong to U because it is not smooth

and it is supported on [0, 1]n, not inside it. The �rst problem can be �xed, because smooth functions
are dense in Ck([0, 1]n) and the second problem can be �xed by a small dilatation. The theorem is
�nally proved.
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