A note on approximation of analytic Lipschitz functions on strips and semi-strips

D. M. Stolyarov

September 6, 2017

Abstract

We give an alternative proof of the central lemma in [1] and provide a slight generalization.

1 The first problem

We investigate analytic functions on strips. We denote the real and imaginary parts of z by $\Re z$ and $\Im z$ respectively. For any $\kappa \geqslant 0$, let Π_{κ} be the strip of width 2κ :

$$\Pi_{\kappa} = \{ z \in \mathbb{C} \mid |\Im z| \leqslant \kappa \}$$

and let Π_{κ}^{+} be the semi-strip of the same width

$$\Pi_{\kappa} = \{ z \in \mathbb{C} \mid |\Im z| \leqslant \kappa, \ \Re z \geqslant 0 \}.$$

We start with a reformulation of Lemma 3.1 in [1].

Lemma 1.1. For any $0 < \beta < \gamma$ and any $\varepsilon > 0$, there exists a number $C = C(\varepsilon, \beta, \gamma)$ with the following property. For any analytic function $U: \Pi_{\beta}^+ \to \mathbb{C}$ there exists an analytic function $V: \Pi_{\gamma}^+ \to \mathbb{C}$ such that

$$||V - U||_{L_{\infty}(\Pi_{0}^{+})} \leqslant \varepsilon \quad and \quad ||V||_{\operatorname{Lip}(\Pi_{\gamma}^{+})} \leqslant C||U||_{\operatorname{Lip}(\Pi_{\beta}^{+})}. \tag{1.1}$$

In [1], the authors used analytic partition of unity and the Jackson–Bernstein theorem to prove Lemma 1.1. We present another approach and start with a slight generalization.

Lemma 1.2. For any Lipschitz function $f: \mathbb{R}_+ \to \mathbb{C}$, any $\gamma > 0$, and any $\varepsilon > 0$, there exists a constant $C = C(\varepsilon, \gamma)$ and an entire function V such that

$$||f - V||_{L_{\infty}(\Pi_{\alpha}^{+})} \leqslant \varepsilon \quad and \quad ||V||_{Lip(\Pi_{\alpha}^{+})} \leqslant C||f||_{Lip(\mathbb{R}_{+})}. \tag{1.2}$$

Proof. Let \tilde{f} be any Lipschitz extension of f to the whole real line. Fix a Schwartz function χ on the line with spectrum in [-1,1] and unit integral. Define f_{δ} by the formula

$$f_{\delta} = \tilde{f} * \chi_{\delta}, \qquad \chi_{\delta}(x) = \delta^{-1} \chi(\delta^{-1} x).$$

The spectrum of f_{δ} belongs to $[-\delta^{-1}, \delta^{-1}]$. By the Paley-Wiener-Schwartz theorem, f_{δ} extends to the entire function V of type δ^{-1} . We shall prove that V is the function we are looking for provided δ is sufficiently small. Let us prove the first property:

$$\left| \tilde{f} - \tilde{f} * \chi_{\delta} \right| (x) = \left| \int (\tilde{f}(x) - \tilde{f}(x - y)) \chi \left(\frac{y}{\delta} \right) d \frac{y}{\delta} \right| \lesssim \|\tilde{f}\|_{\text{Lip}} \int |y| \left| \chi \left(\frac{y}{\delta} \right) \right| d \frac{y}{\delta} \lesssim \|f\|_{\text{Lip}} \int |\delta y| |\chi(y)| \, dy = O(\delta) \|f\|_{\text{Lip}}.$$

So, the first property is satisfied if we take $\delta = K\varepsilon$ for sufficiently small constant K. Let us verify the second one. We have to estimate $\|\partial V\|_{L_{\infty}(\Pi_{\gamma}^{+})}$. We express $\partial V(\cdot, y)$ in terms of \tilde{f}' :

$$\partial V(z) = \int_{\mathbb{P}} 2\pi i \xi \hat{f}_{\delta}(\xi) e^{2\pi i \xi z} d\xi = \int_{\mathbb{P}} 2\pi i \xi \hat{\chi}(\delta \xi) \hat{\tilde{f}}(\xi) e^{2\pi i \xi (x+iy)} d\xi, \qquad z = x+iy.$$

Thus, $\partial V(\cdot,y)$ can be expressed as $M_y[\tilde{f}']$, where M_y is the Fourier multiplier with the symbol $\hat{\chi}(\delta\xi)e^{-2\pi y\xi}$. It suffices to prove that this multiplier acts on L_{∞} with uniformly bounded norm when y is bounded. This is trivial since the symbol $\hat{\chi}(\delta\xi)e^{-2\pi y\xi}$ is uniformly bounded in any Schwartz semi-norm.

2 Extensions of analytic functions

Lemma 2.1. For any $0 < \beta < \gamma$, any $\varepsilon > 0$, and any analytic function $U: \Pi_{\beta} \to \mathbb{C}$, there exists an analytic function $V: \Pi_{\gamma} \to \mathbb{C}$ such that

$$\|U-V\|_{L_{\infty}(\Pi_{\beta})}\leqslant \varepsilon \quad and \quad \|V\|_{\mathrm{Lip}(\Pi_{\gamma})}\leqslant C(\beta,\gamma,\varepsilon)\|f\|_{\mathrm{Lip}(\Pi_{\beta})}. \tag{2.1}$$

This lemma can be proved by the same method as Lemma 1.2. For semi-strips, additional efforts are required.

Lemma 2.2. For any $0 < \beta < \gamma$, any $\varepsilon > 0$, and any analytic function $U: \Pi_{\beta}^+ \to \mathbb{C}$, there exists an analytic function $V: \Pi_{\gamma}^+ \to \mathbb{C}$ such that

$$\|U-V\|_{L_{\infty}(\Pi_{\beta}^{+}+1)} \leqslant \varepsilon \quad and \quad \|V\|_{\operatorname{Lip}(\Pi_{\gamma}^{+})} \leqslant C(\beta,\gamma,\varepsilon) \|U\|_{\operatorname{Lip}(\Pi_{\beta})}. \tag{2.2}$$

We approximate U not on the whole semi-strip Π_{β}^+ , but on a smaller set

$$\Pi_{\beta}^{+} + 1 = \{ z \in \mathbb{C} \mid |\Im z| \leqslant \beta, \ \Re z \geqslant 1 \}.$$

Proof. We extend U to the whole strip Π_{β} preserving its Lipschitz constant in such a manner that the extension \tilde{U} is constant when $\Re z \leqslant -\beta$. After that we convolve \tilde{U} with χ_{δ} in the same manner as we did in the proof of Lemma 1.2 and get the function W. This function is not analytic on Π_{β} , however, its boundary values $f|_{\Im z=\pm\beta}$ allow analytic extensions to Π_{γ} . Denote these extensions by W_+ and W_- respectively. Consider the function $\tilde{W} \colon \Pi_{\gamma} \to \mathbb{C}$ given by the formula

$$\tilde{W} = \begin{cases} W_+, & \Im z \in [\beta, \gamma]; \\ W, & z \in \Pi_\beta; \\ W_-, & \Im z \in [-\gamma, -\beta]. \end{cases}$$

As we have seen, \tilde{W} is Lipschitz in Π_{γ} and approximates \tilde{U} in Π_{β} if $\delta \leqslant K\varepsilon$ for sufficiently small constant K. The only problem is that \tilde{W} is not analytic, namely,

$$\bar{\partial}\tilde{W} = \begin{cases}
0, & \Im z \in [\beta, \gamma]; \\
\bar{\partial}\tilde{U} * \chi_{\delta}, & z \in \Pi_{\beta}; \\
0, & \Im z \in [-\gamma, -\beta].
\end{cases}$$
(2.3)

Note that $\bar{\partial} \tilde{U}$ does not vanish on $[-\beta, 0] \times [-\beta, \beta]$ only and is bounded by $||U||_{\text{Lip}}$ there. Therefore, $\bar{\partial} \tilde{W}$ is rapidly decaying at infinity,

$$|\bar{\partial}\tilde{W}|(z) \lesssim (1 + \delta^{-1}|\Re z|)^{-10} ||U||_{\text{Lip}}, \text{ when } \Re z > 0.$$
 (2.4)

To make \tilde{W} a smooth function, we convolve it with a non-negative C^{∞} -function of two variables supported in $[-\delta, \delta]^2$, having unit integral, and denote the result of such a convolution by \tilde{W} . Then,

$$\left\| \tilde{\tilde{W}} - \tilde{W} \right\|_{\Pi_{\beta}} \leqslant \varepsilon$$

and the inequality (2.4) holds for $\tilde{\tilde{W}}$ in the place of \tilde{W} as well, provided δ is sufficiently small. What is more, $\tilde{\tilde{W}}$ is a smooth function, whose smoothness depends on δ . We consider the correction term

$$E(z) = \frac{1}{2\pi i} \int_{\Pi_{\gamma}} \frac{\bar{\partial} \tilde{\tilde{W}}(\zeta) \, dm(\zeta)}{\zeta - z},$$

(we integrate with respect to the Lebesgue measure). Then, the function $V = \tilde{\tilde{W}} - E$ is analytic on Π_{γ} . We need to prove that E has small L_{∞} norm on $\Pi_{\beta}^+ + 1$ and has bounded Lipschitz norm. The first estimate:

$$\begin{split} \left| \int\limits_{\Pi_{\gamma}} \frac{\bar{\partial} \tilde{W}(\zeta) \, dm(\zeta)}{z - \zeta} \right| & \lesssim \int\limits_{\Pi_{\gamma}} \frac{(1 + \delta^{-1} | \Re \zeta|)^{-10} \, dm(\zeta)}{|z - \zeta|} \Big| \|U\|_{\text{Lip}} \leqslant \\ & \left| \int\limits_{|\zeta - z| \leqslant \frac{1}{2}} \frac{(1 + \delta^{-1} | \Re \zeta|)^{-10} \, dm(\zeta)}{|z - \zeta|} \Big| \|U\|_{\text{Lip}} + \left| \int\limits_{\{|\zeta - z| \geqslant \frac{1}{2}\} \cap \Pi_{\gamma}} \frac{(1 + \delta^{-1} | \Re \zeta|)^{-10} \, dm(\zeta)}{|z - \zeta|} \Big| \|U\|_{\text{Lip}} \leqslant \\ & O(\delta^{10}) \|U\|_{\text{Lip}} + \left(\int\limits_{\{|\zeta - z| \geqslant \frac{1}{2}\} \cap \Pi_{\gamma}} \frac{dm(\zeta)}{|z - \zeta|^2} \right)^{\frac{1}{2}} \left(\int\limits_{\{|\zeta - z| \geqslant \frac{1}{2}\} \cap \Pi_{\gamma}} (1 + \delta^{-1} | \Re \zeta|)^{-20} \, dm(\zeta) \right)^{\frac{1}{2}} \|U\|_{\text{Lip}} = O\left(\sqrt{\delta}\right) \|U\|_{\text{Lip}} \end{split}$$

since $|z| \ge 1$. So, we may take $\varepsilon = \sqrt{\delta} ||U||_{\text{Lip}}$.

To control the Lipschitz norm of E, we simply use higher derivatives of $\tilde{\tilde{W}}$:

$$|\partial E(z)| = \left| \frac{1}{2\pi i} \int_{\Pi_{\gamma}} \frac{\bar{\partial} \tilde{\tilde{W}}(\zeta) \, dm(\zeta)}{(z - \zeta)^2} \right| \lesssim \|\bar{\partial} \tilde{\tilde{W}}\|_{C^1} \lesssim_{\delta} \|\tilde{f}\|_{\text{Lip}}.$$

References

[1] W. Smith, D. M. Stolyarov, A. Volberg, Uniform approximation of Bloch functions and the boundedness of the integration operator on H^{∞} , Adv. Math. **314** (2017), 185–202.