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Abstract

We give an alternative proof of the central lemma in [1] and provide a slight generalization.

1 The �rst problem

We investigate analytic functions on strips. We denote the real and imaginary parts of z by <z and =z
respectively. For any κ > 0, let Πκ be the strip of width 2κ:

Πκ = {z ∈ C | |=z| 6 κ}

and let Π+
κ be the semi-strip of the same width

Πκ = {z ∈ C | |=z| 6 κ, <z > 0}.

We start with a reformulation of Lemma 3.1 in [1].

Lemma 1.1. For any 0 < β < γ and any ε > 0, there exists a number C = C(ε, β, γ) with the following

property. For any analytic function U : Π+
β → C there exists an analytic function V : Π+

γ → C such that

‖V − U‖L∞(Π+
0 ) 6 ε and ‖V ‖Lip(Π+

γ ) 6 C‖U‖Lip(Π+
β ). (1.1)

In [1], the authors used analytic partition of unity and the Jackson�Bernstein theorem to prove
Lemma 1.1. We present another approach and start with a slight generalization.

Lemma 1.2. For any Lipschitz function f : R+ → C, any γ > 0, and any ε > 0, there exists a con-

stant C = C(ε, γ) and an entire function V such that

‖f − V ‖L∞(Π+
0 ) 6 ε and ‖V ‖Lip(Π+

γ ) 6 C‖f‖Lip(R+). (1.2)

Proof. Let f̃ be any Lipschitz extension of f to the whole real line. Fix a Schwartz function χ on the
line with spectrum in [−1, 1] and unit integral. De�ne fδ by the formula

fδ = f̃ ∗ χδ, χδ(x) = δ−1χ(δ−1x).

The spectrum of fδ belongs to [−δ−1, δ−1]. By the Paley�Wiener�Schwartz theorem, fδ extends to the
entire function V of type δ−1. We shall prove that V is the function we are looking for provided δ is
su�ciently small. Let us prove the �rst property:∣∣∣f̃ − f̃ ∗ χδ∣∣∣(x) =

∣∣∣ ∫ (f̃(x)− f̃(x− y))χ
(y
δ

)
d
y

δ

∣∣∣ . ‖f̃‖Lip

∫
|y|
∣∣∣χ(y

δ

)∣∣∣ dy
δ
.

‖f‖Lip

∫
|δy||χ(y)| dy = O(δ)‖f‖Lip.
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So, the �rst property is satis�ed if we take δ = Kε for su�ciently small constant K. Let us verify the
second one. We have to estimate ‖∂V ‖L∞(Π+

γ ). We express ∂V (·, y) in terms of f̃ ′:

∂V (z) =

∫
R

2πiξf̂δ(ξ)e
2πiξz dξ =

∫
R

2πiξχ̂(δξ)
ˆ̃
f(ξ)e2πiξ(x+iy) dξ, z = x+ iy.

Thus, ∂V (·, y) can be expressed asMy[f̃ ′], whereMy is the Fourier multiplier with the symbol χ̂(δξ)e−2πyξ.
It su�ces to prove that this multiplier acts on L∞ with uniformly bounded norm when y is bounded.
This is trivial since the symbol χ̂(δξ)e−2πyξ is uniformly bounded in any Schwartz semi-norm.

2 Extensions of analytic functions

Lemma 2.1. For any 0 < β < γ, any ε > 0, and any analytic function U : Πβ → C, there exists an

analytic function V : Πγ → C such that

‖U − V ‖L∞(Πβ) 6 ε and ‖V ‖Lip(Πγ) 6 C(β, γ, ε)‖f‖Lip(Πβ). (2.1)

This lemma can be proved by the same method as Lemma 1.2. For semi-strips, additional e�orts are
required.

Lemma 2.2. For any 0 < β < γ, any ε > 0, and any analytic function U : Π+
β → C, there exists an

analytic function V : Π+
γ → C such that

‖U − V ‖L∞(Π+
β +1) 6 ε and ‖V ‖Lip(Π+

γ ) 6 C(β, γ, ε)‖U‖Lip(Πβ). (2.2)

We approximate U not on the whole semi-strip Π+
β , but on a smaller set

Π+
β + 1 = {z ∈ C | |=z| 6 β, <z > 1}.

Proof. We extend U to the whole strip Πβ preserving its Lipschitz constant in such a manner that the

extension Ũ is constant when <z 6 −β. After that we convolve Ũ with χδ in the same manner as we
did in the proof of Lemma 1.2 and get the function W . This function is not analytic on Πβ , however,
its boundary values f |=z=±β allow analytic extensions to Πγ . Denote these extensions by W+ and W−
respectively. Consider the function W̃ : Πγ → C given by the formula

W̃ =


W+, =z ∈ [β, γ];

W, z ∈ Πβ ;

W−, =z ∈ [−γ,−β].

As we have seen, W̃ is Lipschitz in Πγ and approximates Ũ in Πβ if δ 6 Kε for su�ciently small

constant K. The only problem is that W̃ is not analytic, namely,

∂̄W̃ =


0, =z ∈ [β, γ];

∂̄Ũ ∗ χδ, z ∈ Πβ ;

0, =z ∈ [−γ,−β].

(2.3)

Note that ∂̄Ũ does not vanish on [−β, 0]× [−β, β] only and is bounded by ‖U‖Lip there. Therefore, ∂̄W̃
is rapidly decaying at in�nity,

|∂̄W̃ |(z) . (1 + δ−1|<z|)−10‖U‖Lip, when <z > 0. (2.4)
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To make W̃ a smooth function, we convolve it with a non-negative C∞-function of two variables supported

in [−δ, δ]2, having unit integral, and denote the result of such a convolution by ˜̃W . Then,∥∥ ˜̃W − W̃
∥∥

Πβ
6 ε

and the inequality (2.4) holds for ˜̃W in the place of W̃ as well, provided δ is su�ciently small. What is

more, ˜̃W is a smooth function, whose smoothness depends on δ. We consider the correction term

E(z) =
1

2πi

∫
Πγ

∂̄ ˜̃W (ζ) dm(ζ)

ζ − z
,

(we integrate with respect to the Lebesgue measure). Then, the function V = ˜̃W −E is analytic on Πγ .
We need to prove that E has small L∞ norm on Π+

β + 1 and has bounded Lipschitz norm.
The �rst estimate:∣∣∣∣ ∫
Πγ

∂̄ ˜̃W (ζ) dm(ζ)

z − ζ

∣∣∣∣ (2.4)

.

∣∣∣∣ ∫
Πγ

(1 + δ−1|<ζ|)−10 dm(ζ)

|z − ζ|

∣∣∣∣‖U‖Lip 6

∣∣∣∣ ∫
|ζ−z|6 1

2

(1 + δ−1|<ζ|)−10 dm(ζ)

|z − ζ|

∣∣∣∣‖U‖Lip +

∣∣∣∣ ∫
{|ζ−z|> 1

2}∩Πγ

(1 + δ−1|<ζ|)−10 dm(ζ)

|z − ζ|

∣∣∣∣‖U‖Lip 6

O(δ10)‖U‖Lip+

( ∫
{|ζ−z|> 1

2}∩Πγ

dm(ζ)

|z − ζ|2

) 1
2
( ∫
{|ζ−z|> 1

2}∩Πγ

(1+δ−1|<ζ|)−20 dm(ζ)

) 1
2

‖U‖Lip = O
(√
δ
)
‖U‖Lip

since |z| > 1. So, we may take ε =
√
δ‖U‖Lip.

To control the Lipschitz norm of E, we simply use higher derivatives of ˜̃W :

|∂E(z)| =
∣∣∣ 1

2πi

∫
Πγ

∂̄ ˜̃W (ζ) dm(ζ)

(z − ζ)2

∣∣∣ . ‖∂̄ ˜̃W‖C1 .δ ‖f̃‖Lip.
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